
PREBIOTICS:
Eff ects On Gastrointestinal And Host Health

Gastrointestinal
mucosa



The gut microbiome plays a crucial role in host health through its impact on digestion, 
metabolism, and immunity.1 The large intestine houses a diverse and complex 
microbial ecosystem that adapts in response to substrate availability, pH, oxygen 
levels, and other variables.1-3 The majority of the bacteria in the colon are anaerobic 
species capable of utilizing nutrients, such as dietary fi ber and protein, that escape 
digestion in the upper gastrointestinal tract.2,4 While there are numerous infl uences 
on microbiome composition, nutritional intervention provides a daily opportunity to 
infl uence the health of the microbiome – and ultimately, the health of the host.

Oligosaccharide
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Dietary fibers are generally composed of structural 
components and carbohydrates derived from plants and 
fungi.5 They escape digestion in the upper gastrointestinal 
tract because the host lacks the digestive enzymes to 
break them down.5,6 The physical properties of dietary 
fibers vary widely, and even minor variations influence the 
fermentability and physiological effects.7,8 

The consumption of dietary fiber results in extensive 
metabolic interactions among the microorganisms in the 
large intestine.1 Saccharolytic bacteria in the colon obtain 
carbon and energy through the fermentation of certain 
carbohydrates and produce end products – such as short-
chain fatty acids (SCFA) – that provide benefits to the 
host.4,9

PREBIOTICS: NOT ALL DIETARY
FIBERS ARE EQUAL

The concept of prebiotics was first described in 1995 by 
Gibson & Roberfroid2 as “non-digestible food ingredients 
that beneficially influence the health of the host by 
stimulating the activity of one or more commensal colon 
bacteria.” The definition has been revised since that 
time,1,4,6,20,21 with the current definition defined by the 
International Scientific Association for Probiotics and 
Prebiotics (ISAPP) as “substrates selectively used by micro-
organisms of the host conferring a health benefit.”21-23

Not all dietary fibers have prebiotic effects but the majority 
of prebiotics are non-digestible (by the host), fermentable 
dietary fibers.1,20,22 Most prebiotics are carbohydrates – more 
specifically, oligosaccharides.6 To date, only inulin-type 
fructans (ITF) and galactans meet all of the ISAPP prebiotic 
criteria.21,22,24 However, a number of substances, including 
non-plant sources, possess prebiotic potential and are 
considered “candidate prebiotics”– including human 
milk oligosaccharides, yeast-based substances and non-
carbohydrates (e.g., polyphenols, fatty acids, herbs and 
some micronutrients).20,22,24,25

Commonly used pet food ingredients with prebiotic 
activity or potential

 ■ Arabinoxylan-oligosaccharide (AXOS) 

 ■ β-glucans 

 ■ Fructans (e.g., inulin, oligofructose [OF] and 
fructooligosaccharides [FOS]) 

 ■ Citrus pulp 

 ■ Cranberries

According to the International Scientific Association 
for Probiotics and Prebiotics (ISAPP), a substance 
must meet 3 criteria in order to be considered a 
prebiotic:6,20-23

 ■ Resistant to digestion in upper GI tract

 ■ Fermentable by microbiota

 ■ Specifically stimulate growth and/or activity of 
beneficial bacteria

In addition, the Food and Agriculture Organization 
of the United Nations (FAO) states the substance 
must also be safe based on traditional studies and 
has to be ingested in a plausible daily amount to 
have the prebiotic effect.20

DIETARY FIBERS

Dietary fiber for cats?   While plants 
(and therefore, plant fibers) are not 
typically present in the 
natural diet of cats and 
other carnivores, they can 
offer distinct physiological 
benefits for cats.7,10-19
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 ■ Galactooligosaccharide (GOS) 

 ■ Lactulose

 ■ Mannanoligosaccharide (MOS) 

 ■ Pectin 

 ■ Psyllium (including seed husk) 

 ■ Pumpkin 

 ■ Soybean oligosaccharides (e.g., raffinose, stachyose, 
verbascose) 

 ■ Spent brewers’ grains

 ■ Wheat aleurone

Fructans

Fructans were the first prebiotics identified and used 
as food ingredients and include inulin, oligofructose 
and short-chain fructooligosaccharides.2,21 Inulin and 
oligofructose can be naturally found in agave, artichokes, 
asparagus, bananas, chicory root, garlic, onions, leeks and 
wheat.1,21 They are composed of linear or branched fructose 
chains, usually with terminal glucose units.6 

Inulin is a long-chain carbohydrate 
consisting of fructose units and is most 
commonly extracted from chicory 
root,2,6,14,21,26 which is approximately 55% 
inulin.27,28

Oligofructose (OF) is a shorter-chain 
carbohydrate composed of fructose 
units.2,6,14,21 It can be extracted from plants or 
produced by partial enzymatic hydrolysis of 
inulin.21 

Short-chain fructooligosaccharides 
(scFOS) are the shortest fructose-based chain 
carbohydrates in this category.21 Although 
they can be extracted from plants, they are 
more commonly synthesized from sucrose 
and fructose using an enzymatic process.21

Galactans

Galactooligosaccharides (GOS) are synthetic lactose-
based oligosaccharides, some of which are derived from 
lactulose.6

Other substances with prebiotic potential

Beta-glucans (β-glucans) are glucose-based 
polysaccharides that comprise major structural 
components of the cell wall of yeasts, fungi and some 
bacteria and can also be found in barley and oats.29

Mannanoligosaccharides (MOS) are derived from the cell 
wall of the yeast Saccharomyces cerevisiae.28

Psyllium is derived from the seeds of Plantago ovata and 
predominately consists of highly-branched arabinoxylan.30

Pumpkin fiber may contain rhamnogalacturonans, 
arabinoxylans, xyloglucans, xylogalaturonans, 
galacturonic acid, galactoglucomannans, and pectins.31,32 

Wheat aleurone is the innermost layer of wheat bran and 
is composed of approximately 65% arabinoxylan and 29% 
β-glucans.33,34

Xylooligosaccharides (XOS) are polymers of xylose.19 

Ease of handling and the ability to withstand 
processing and storage give prebiotics a distinct 
advantage in pet food manufacturing.35 

Wheat aleurone

Aleurone layer

Figure 2:
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VARIABILITY IN PREBIOTICS

The activity of a prebiotic is affected by its physicochemical 
structure. The degree of polymerization (DP) is based 
on the chain length of the fiber.2 The original source, 
DP, chemical bonds, and the amount of branching of 
the fiber affects the ability of microorganisms to utilize 
it as an energy source.1,5,21 For example, a short-chain 
oligosaccharide (low DP) with minimal branching will 
be fermented more quickly than a longer-chain (higher 
DP) fiber with a more complex structure. Even different 
prebiotics from the same prebiotic category (e.g., fructans) 
can have different effects based on differences in chemical 
structure.21,36,37 

The diversity of bacterial species in the gut microbiome 
is associated with variability in the microbiome’s ability 
to metabolize prebiotics.1,6,21 Saccharolytic bacteria 
possess enzymes that allow them to metabolize a wide 
variety of carbohydrates.1 Some “generalist” species have 
many enzymes that allow them to metabolize a number 
of complex carbohydrates, while more “specialist” 
species can only utilize one or a few shorter-chain 
carbohydrates.1,5,6 Even bacterial species within the same 
genera can differ in their ability to degrade fiber sources.1 
As a result of this variation, as well as individual variation 
in microbiota populations, the fermentation of different 

prebiotics can produce different amounts and ratios of 
fermentation products (such as short-chain fatty acids, 
SCFAs) – resulting in potentially different physiological 
effects of the same prebiotic between hosts.7,16,37-39 

A direct comparison of the effects of different prebiotics in 
dogs or cats is difficult due to wide variation in the base 
diets; type, duration and amount of prebiotic consumed; 
and methods of evaluation.21,37,40  

COMBINING PREBIOTICS

Because they provide variable fermentation rates 
and prebiotic compositions, fiber blends may offer 
complementary or synergistic benefits beyond those 
provided by individual prebiotics.20,28,46,49 Providing diverse 
fibers could provide metabolic support for a more diverse 
range of microbes – both generalists and specialists. 

However, it is also possible that component prebiotics 
may compete for fermentation by microbiota, resulting in 
mixed effects or even diminished effects; therefore, as with 
probiotics, potential prebiotic blends should be evaluated 
for their efficacy in the target species.28 

PHYSIOLOGICAL EFFECTS OF
PREBIOTICS
 
Prebiotics can exert direct and indirect effects on gut 
health.

Selective enhancement of beneficial 
microbiota

The fermentation of prebiotic fibers is the result of complex 
interactions between multiple bacterial species in the 
colon,9 and the microbiome population and function 
adapt in response to changes in the available energy 
sources (substrates) for the bacteria.45,50 Prebiotics provide 
ample substrate and create a favorable environment for 
saccharolytic bacteria – such as Bifidobacterium and 

Factors determining variability in response 
to prebiotics:

 ■ Host species- and individual-level variations in 
gut microbial populations1,6,18,21

 ■ Structure (DP, branching) of the prebiotic1,6,7,21

 ■ Base diet21,36,41

 ■ Amount of prebiotic consumed1,7,14,19,21,27,36,42-47 

 ■ Duration of administration18,21,46,48
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Lactobacillus species – that are known to have health 
benefits for the host.6,22,23,51,52 This activity is considered 
a primary function of prebiotics, and is one of the three 
ISAPP criteria.22,47 Enhancing the growth of beneficial 
bacteria can result in enhancement of their benefits – such 
as increases in butyrate production as well as B vitamin 
production and bile acid conversion.8,9,21-23,51

Short-chain fatty acid production

Many benefits of prebiotics result from the effects of SCFAs 
produced during microbial fermentation.22,23 The primary 
SCFAs formed are acetate, propionate and butyrate. SCFAs 
impact many molecular and cellular processes and play 
important roles in gut health as well as host health.5,21,23

SCFA generation is dependent on the available substrates, 
microbial composition, and intestinal transit time.9,53 SCFAs 
interact directly with intestinal epithelial cells and immune 
cells to modify cellular processes, gene expression, and 
cellular differentiation, proliferation and apoptosis.23 

Purported effects of SCFAs include:

 ■ Energy substrate for intestinal epithelial cells 
(butyrate)1,4,14,26,38,43,49,54,55

 ■ Increase absorptive capacity through stimulation of 
colonocyte proliferation54 

 ■ Increase expression of antimicrobial peptides (e.g., 
defensins)23 

 ■ Strengthen epithelial barrier function through induction 
of tight junction proteins23 

 ■ Modulate cellular processes in colonocytes and 
immune cells, including gene expression and cellular 
differentiation, proliferation and apoptosis23 

 ■ Stimulate activity of antioxidant enzymes such as 
glutathione S-transferases20

 ■ Modulation of vagal nerve activity55

 ■ Anti-inflammatory actions5

 ■ Improve bioavailability of calcium and magnesium54 

SCFAs readily diffuse through enterocytes into the 
bloodstream, facilitating their potential effects on glucose 
and lipid metabolism as well as on distant organs such as 
the lungs, skin, and brain.5,6,23,55 

Reduced intraluminal pH

Fermentation of prebiotics results in the production of 
acetate, lactate and other acids that lower the intraluminal 
pH. This provides a dual benefit of a more supportive pH 
for butyrate-producing beneficial bacteria while creating 
an unfavorable environment for acid-sensitive potential 
pathogens.1,2,4,6,17,56 The reduced pH affects bacterial enzyme 
activity,4 stimulates mucin production,56 and influences 
intestinal motility.4 

Pathogen inhibition

While selective enhancement of beneficial bacteria is one 
of the three ISAPP criteria for prebiotics, some studies 
have demonstrated reductions in potentially pathogenic 
bacteria (such as Clostridium perfringens and Escherichia 
coli).6,10,20,27,57-59 

Pathogen inhibition resulting from prebiotics can result 
from several mechanisms, including:

 ■ Selective enhancement of beneficial microbiota that are 
able to utilize the available substrate and outcompete 
potential pathogens16,17,20,59 

 ■ Production of substances (such as bacteriocins and 
antimicrobial peptides) that are directly inhibitory to 
pathogens2,6,47,49,59 

 ■ Direct inhibition of pathogen adherence, implantation 
and translocation23,41,47,60,61 

 ■ Some oligosaccharides may structurally mimic intestinal 
epithelial cell receptors and serve as decoys to prevent 
pathogen binding59,60  
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Immunomodulation

Prebiotics may exert immunomodulatory eff ects.37,47,49,62,63

Diff erent prebiotics, as well as diff erent levels of the same 
prebiotic, may exert diff erent (or no) impacts on the 
immune system.37,47,49,51,62

The immunomodulatory eff ects of prebiotics are largely 
mediated by SCFA,63,64 and include:

■ Production of stimulatory cytokines and chemokines 
that infl uence immune cells56

■ Induction of anti-infl ammatory cytokine production 
coupled with inhibition of pro-infl ammatory cytokine 
production23

■ Production of substances that stimulate cytokine 
production, mononuclear cell proliferation, macrophage 
phagocytosis, and immunoglobulin production23,47  

■ Increase ileal IgA concentrations to enhance mucosal 
immunity59

Protein fermentation and nitrogen 
balance

Microbial proteolytic metabolism in the colon can 
produce benefi cial products (such as propionate), but is 
also associated with the production of potentially toxic, 
putrefactive compounds (e.g., ammonia, phenols, thiols, 
biogenic amines).21,54 Reducing protein fermentation 
by shift ing the environment to favor saccharolytic 
fermentation reduces concentrations of undesirable 
metabolites.24,54 An additional benefi t of reducing 
putrefactive compounds is a potential reduction in fecal 
odor in dogs26,57 and cats.10,58 Fructans such as FOS have 
been associated with a shift  of nitrogen elimination from 
urine to the colon,13,14,65 where urease-positive microbes 
metabolize urea to ammonia for incorporation into 
bacterial proteins.14 This may benefi t patients with renal 
impairment.

Purported mechanisms 
of action of prebiotics. 
Interindividual variation 
in the microbiome, the 
base diet, and the type, 
inclusion level and 
duration of prebiotic 
administration may all 
infl uence the ultimate 
eff ects of the prebiotic.

Figure 3:
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Other effects

Additional purported benefits of prebiotic administration 
include antioxidant activities66 and improved calcium and 
magnesium absorption.4,37,67 

Adverse effects of prebiotics have been infrequently 
reported, and are most likely the result of osmotic effects 
or excessive fermentation associated with higher levels 
of prebiotic inclusion.6,7,12,14,16,20 Potential adverse effects 
include diarrhea, bloating, abdominal discomfort, and 
flatulence.20 

POTENTIAL CLINICAL 
BENEFITS OF PREBIOTICS
 

Numerous published studies have demonstrated the safety 
and impact of prebiotics in healthy animals, but translation 
of these results to diseased or dysbiotic animals is difficult 
and more research is needed to evaluate the clinical 
benefits of specific prebiotics and prebiotic blends.40

Preventive gastrointestinal health

Prebiotic-induced increases in intestinal villi height and 
absorptive capacity, enhancement of beneficial bacteria, 
and reductions in fecal putrefactive catabolites may 
facilitate intestinal health and absorptive capacity.16,26,68,69 
Reduced fecal putrefactive catabolites can lead to reduced 
fecal odor in dogs26,57 and cats,10,58 which may improve pet 
owner satisfaction. 

Gastrointestinal conditions

Due to their antioxidant and anti-inflammatory properties, 
prebiotics may play a role in the management of conditions 
in which oxidative stress and inflammation play roles in 
pathogenesis (e.g., enteritis).3,20 By selectively enhancing 
beneficial microbiota and directly or indirectly inhibiting 
pathogenic microbes, prebiotics may improve microbial 
balance and help mitigate dysbiosis. Through their 
beneficial impacts on barrier function and intestinal 
motility, coupled with reductions in putrefactive 
byproducts, prebiotics may help reduce the risk of 

infection.4 Certain prebiotic fibers, such as psyllium30 and 
AXOS54 may provide anti-constipation benefits. 

Synbiotic combinations

Synbiotics are combinations of prebiotics and probiotics; 
the beneficial prebiotic effects may be enhanced if they 
are used in combination with probiotics, and the presence 
of prebiotics may enhance the benefits of probiotic 
strains.37,56,70 Complementary synbiotics are composed 
of prebiotic fiber(s) and probiotic(s) that each have 
demonstrated health benefits and function independent of 
each other to provide a host benefit.24 Synergistic synbiotics 
contain probiotic(s) and accompanying prebiotic(s) 
that serve as the fermentable substrate for the probiotic 
to facilitate and enhance its survival and beneficial 
functions.24 In synergistic synbiotics, the prebiotic and 
probiotic components may or may not have independent 
health benefits for the host.24 Synbiotic combinations 
may have different effects from those of the prebiotic or 
probiotic administered independently, and may not always 
be complementary or synergistic;71 therefore, synbiotics 
should be evaluated for safety and efficacy in the target 
species.

Prebiotic functions that may help 
veterinarians manage gastrointestinal 
conditions include:

 ■ Antioxidant activity

 ■ Anti-inflammatory properties

 ■ Enhance barrier integrity

 ■ Enhance beneficial bacteria

 ■ Inhibit pathogens

 ■ Reduce putrefactive byproducts

 ■ Improve intestinal motility

 ■ Enhance IgA production 

 ■ Immunomodulation
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Metabolic support 

Numerous published studies have demonstrated potential 
benefi ts of prebiotics for weight management for pets. 
Prebiotic fi bers improve satiety and reduce voluntary food 
intake;29,68,72 improve glucose homeostasis29,38,68,73 and lipid 
metabolism;29,35,73 and attenuate systemic infl ammation55

and oxidative stress.34

Immune support 

The immunomodulatory actions of prebiotics have, to 
date, been primarily established as improved immune 
indices in healthy animals and vary based on the prebiotic 
evaluated35,47,49,51 but may indicate opportunities for 
nutritional intervention to improve immune health. 

Dietary supplementation with scFOS in pregnant dogs aft er 
the 35th day of gestation resulted in signifi cantly higher 
IgM levels in colostrum and milk as well as a trend toward 
higher concentrations of anti-Bordetella IgM in the puppy’s 
nasal secretions two weeks aft er vaccination.74  

Other potential eff ects 

Prebiotics, either through direct eff ects or SCFA production, 
may have additional benefi cial impact on host health.64,75

Potential indications include allergies,53 colorectal 
neoplasia,76 atopic dermatitis and skin health,22,24,75

cardiovascular disease,20,75 skeletal health,20 and mental 
health/cognition.20,22,75,77 Further research is needed to 
determine the benefi ts of prebiotics for these conditions in 
dogs and cats. 

Prebiotic functions that may help with 
weight management include:

■ Improve satiety

■ Reduce voluntary food intake

■ Improve glucose homeostasis

■ Improve lipid metabolism

■ Anti-infl ammatory properties

■ Attenuate oxidative stress
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Nutritional interventions provide opportunities for manipulating the microbiome 
to create health benefi ts for the microbiome and the host. SCFAs play critical 
roles in gut and host health, and prebiotics are known enhancers of SCFA 
production. Prebiotics off er numerous benefi ts through enhancing benefi cial 
bacteria, inhibiting potential pathogens, reducing potentially harmful microbial 
byproducts, and modulating immunity and infl ammation.

Inulin
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