
CHRONIC KIDNEY DISEASE IN CATS:
Nutritional Management



CHRONIC KIDNEY DISEASE IS A COMMON
HEALTH CONCERN FOR CATS

While chronic kidney disease (CKD) can occur at any stage of life, its prevalence 
increases with age.1,2 Research has reported that cats have an approximately 
20–40% greater risk of developing CKD with each passing year.1,3

Although the disease cannot be cured, targeted nutritional strategies can have a 
beneficial impact in cats with CKD.4-7 Therapeutic renal diets may help slow disease 
progression, reduce signs of uremia, address homeostatic changes that result from 
decreased renal function, and improve the pet’s quality of life and life span. 

Ongoing research into biomarkers as well as other emerging areas of research 
may make earlier disease detection possible in the future and enable clinicians to 
diagnose and stage cats with CKD more accurately. These developments in turn 
may help further target nutritional and medical strategies to best meet the needs 
of each cat.
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Healthy kidneys filter metabolic waste and help maintain 
the balance of fluids and electrolytes. They also help 
maintain acid-base balance, regulate phosphorus and 
potassium levels, produce the hormone erythropoietin, 
which stimulates red blood cell production, and influence 
blood pressure through the production of renin.  

Nephrons are the functional units of the kidney. In the 
nephron, blood vessels from the body feed into the 
glomerulus, a high-pressure bundle of capillaries where 
the first step of filtration occurs. The resulting filtrate 
then passes through a series of tubules where additional 
substances are added to the filtrate or reabsorbed into the 
bloodstream before the fluid drains into collecting ducts 
that lead to the bladder.

 

Chronic kidney disease is defined as abnormal renal 
structure or function, or both, that has persisted for 3 
months or more.8

More than 50% of cases of CKD in cats are idiopathic.9,10 
In most cats with CKD, the kidneys are damaged by 
inflammation and progressive fibrosis of the tubules.9,11-14 
This is in contrast to CKD in dogs, in which primary 
glomerular disease is more common.15

Regardless of the inciting cause, CKD results in the 
progressive loss of nephrons and, as a result, kidney 
function. In early stages, undamaged nephrons 
compensate through hypertrophy, increased glomerular 
capillary pressure, and increased glomerular filtration rates 
(GFR) (hyperfiltration). However, this response cannot be 
maintained indefinitely and, over time, GFR declines. This 
slower rate leads to “leaky” filtration, resulting in rising 
serum levels of phosphorus and waste products—such 
as creatinine and uremic toxins—that should have been 
removed, while protein that should have been retained may 
spill into the urine.12,16

CKD is usually diagnosed by persistent renal azotemia and 
inappropriately dilute urine supported by the presence of 
clinical signs, exam findings, and, potentially, imaging.8 
Creatinine and blood urea nitrogen (BUN) are considered 
functional biomarkers and used as surrogate indicators of 
GFR.8,17

By the time renal azotemia is evident in cats, at least 75% of 
kidney function is compromised,13,18-20 and thus, early CKD 
may be missed.13,18,19,21 The presence of early CKD should be 
suspected if creatinine, although within normal reference 
range, increases by more than 15–20% from baseline or 
increases repeatedly and the elevations persist.8,22-24 

Symmetric dimethylarginine (SDMA) is another functional 
biomarker—one that has been shown to have a linear 
association with creatinine but helps detect disease 
earlier.17,21 A retrospective study showed that SDMA was 
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elevated in 17 of 21 cats with CKD at an average of 17 
months prior to elevated creatinine.21 None of the cats 
with CKD had an increased creatinine before an increased 
SDMA. Sensitivity of serum SDMA was 100% compared to 
17% for serum creatinine. 

Additionally, SDMA is not affected by lean body mass 
(LBM) while creatinine can be falsely low in cats with 
muscle loss.8,25 A study found that geriatric cats (over 15 
years of age) had less lean body mass, lower GFR, higher 
serum SDMA, and lower serum creatinine (likely due to the 
loss of LBM) than cats under 12 years old.25 SDMA was the 
better indicator of kidney function in this study.

The levels of markers, along with signs of disease, help 
gauge the cat’s condition.

Staging CKD

The International Renal Interest Society (IRIS) developed 
guidelines for staging CKD based on fasting blood 
creatinine and SDMA levels—measured at least twice in 
a stable and hydrated patient—after CKD is diagnosed.26 
These guidelines were adopted by the American and 
European Societies of Veterinary Nephrology and Urology 
in 2003.27 The IRIS Board reviews and updates the 
guidelines at least once a year.27

The IRIS guidelines then sub-stage CKD based on the 
presence or absence of proteinuria and hypertension:

Staging and sub-staging help guide treatment with the goal 
to improve outcome, as well as help predict prognosis.28 
Predictably, the stage at the time of diagnosis affects 
median survival.28 In a retrospective study in which 
cats with CKD were staged based on serum creatinine 
and were not sub-staged, cats in stage 2b (in this study, 
defined as having serum creatinine of 2.3–2.8 mg/dL) lived 
a significantly longer time versus cats in later stages: a 
median of 1,151 days compared to 778 days for stage 3 cats 
and 103 days for cats in stage 4.28

Urine protein-to-
creatinine ratio

Proteinuria 
sub-stage

< 0.2 Non-proteinuric
0.2–0.4 Borderline proteinuric

> 0.4 Proteinuric

Systolic blood 
pressure (mm Hg)

Blood pressure sub-
stage

< 140 Normotensive
140–159 Prehypertensive

160–179 Hypertensive
≥ 180 Severely hypertensive

Blood concentrations of 1 2 3 4

Creatinine < 1.6 mg/dL
< 140 µmol/L

1.6–2.8 mg/dL
140–250 µmol/L

2.9–5.0 mg/dL
251–440 µmol/L

> 5.0 mg/dL
> 440 µmol/L

SDMA < 18 μg/dl 18–25 μg/dl 26–38 μg/dl > 38 μg/dl

Feline CKD IRIS Stage
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NUTRITIONAL OBJECTIVES

At any stage of renal disease, the objectives of dietary 
management are to meet the cat’s overall energy and 
nutrient needs, slow disease progression, reduce signs of 
uremia, address changes in homeostasis that result from 
inadequate kidney function, and improve quality of life 
as well as life span.8,12,16 Nutrition should be tailored to 
the individual cat’s needs and response to management.29 
Individualizing the nutrition plan helps address weight 
loss and loss of lean body mass (LBM), or if the cat has not 
lost weight or muscle mass, helps maintain body condition 
and muscle condition.

Whether CKD progresses and its rate of progression 
vary among individual cats.9,13,14,28,30,31 Cats may live with 
the disease for years, emphasizing the importance 
of providing adequate nutrition over the span of 
treatment.8,12,16

MAINTAINING BODY WEIGHT 
AND LEAN BODY MASS

Maintaining body weight and LBM requires adequate 
calorie and protein intake. 

Fat and protein digestibility may be decreased in healthy 
older cats, with research showing cats over 8 years old 
affected.32 In cats over 14 years of age, 30% had decreased 
fat digestibility and 20% had reduced protein digestibility, 
with some cats having reduced digestibility of both fat and 
protein. Results suggest that older cats may have increased 
calorie and protein needs.

Although studies show that cats can metabolically 
accommodate a range of protein levels once minimum 
protein needs are met, an inadequate intake of protein 
leads to loss of LBM.33 Conversely, increased protein intake 
can reduce the loss of LBM.34-36

With age, cats naturally lose LBM.37 Cats with CKD may lose 
even more through metabolic changes or cachexia—the 
excessive loss of muscle in association with disease—which 
may alter strength, immune function, and overall survival.37 
In both aging cats and those with CKD, losses in LBM or 
body weight are associated with increased mortality.28,38-40 
Low body condition score has also been associated with 
decreased survival in dogs with CKD.41

The loss of body weight and LBM often begins before CKD is 
diagnosed in cats.38 Thus, preserving LBM and body weight 
is a key nutritional goal for these felines. The importance 
of LBM preservation, the evidence suggesting older cats 
have increased protein needs, and the increased risk for 
mortality associated with loss of body weight and LBM 
together suggest that protein restriction may not provide 
optimal nutrition for cats with early-stage CKD. (See further 
discussion under Protein in next section.)

Survival time and weight loss in cats with CKD28

Figure 2:

Among 569 cats with CKD, 
those with a body weight at 
diagnosis above the group 
median of 4.2 kg had a 
significantly longer survival 
time than those at weights 
below this median.38
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TARGETED NUTRITIONAL 
STRATEGIES

Numerous studies have shown that therapeutic “renal 
diets” favor better clinical outcomes and can extend life 
span in cats with moderate to severe CKD when compared 
to feeding adult maintenance diets.4-7 Therapeutic renal 
diets are recommended for CKD cats in IRIS stages 2–4,8,42 

although some studies suggest benefit from feeding a 
therapeutic renal diet to cats in stage 1 CKD.43,44

The modifications to therapeutic renal diets typically 
include reduced phosphorus and protein, and added 
alkalinizing agents, potassium, omega-3 fatty acids, and 
antioxidants.4,6-8,42,45,46 

Phosphorus

The kidney is the primary route of phosphorus excretion. 
During progression of CKD, without restriction of 
phosphorus in the diet, the gradual decline in renal 
phosphorus clearance leads to increases in blood 
phosphorus concentrations.47,48

Even before the onset of hyperphosphatemia, rising blood 
phosphorus concentrations trigger increased secretion of 
fibroblast growth factor-23 (FGF-23), a protein secreted by 
bone cells that acts to increase excretion of phosphate in 
the urine.48-50 Additionally, rising blood phosphate triggers 
a response in the parathyroid glands, which balance 
calcium and phosphorus levels.48-51 

The parathyroid glands operate on a feedback system: High 
phosphorus in the bloodstream and low concentrations 
of ionized calcium (the biologically active form of 
calcium)52 stimulate increased parathyroid hormone (PTH) 
levels,48,50,53,54 leading to increased calcium reabsorption 
in the renal tubules, urinary phosphate excretion, and 
calcium and phosphorus resorption from bone.48-51,53 

Renal secondary hyperparathyroidism, with elevated PTH 
concentrations, has been reported in 84% of cats with CKD, 
with prevalence and severity increasing as CKD progresses 
towards end-stage disease.55

Plasma phosphate concentration is a predictor for 
progression of feline CKD.11,30,56 In cats with CKD between 
IRIS stage 2–4, research showed that a 0.32 mmol/L (1 mg/
dL) increase in plasma phosphorus was correlated with 
a 41% higher risk of progression (where progression was 
defined as an at least 25% increase in plasma creatinine 
within a year after diagnosis).30

Minimizing phosphorus retention and hyperphosphatemia 
appears to slow progression of CKD and prolong 
survival.30,46,57 For these reasons, correction or prevention 
of hyperphosphatemia is a primary concern in the 
management of CKD. Historically, this has been 
approached through restricting protein. Many protein 
ingredients have a high phosphorus content;16,58 therefore, 
reducing protein intake may reduce phosphorus intake.16,58 
In cats with IRIS stage 2 through 4 CKD that were 
hyperphosphatemic, feeding phosphate- and protein-
restricted diets (commercial therapeutic renal diets) 
significantly decreased plasma phosphate and FGF-23 
concentrations.5

However, it is possible to formulate diets with lower 
phosphorus without restricting dietary protein.29,59 A 
study in cats with CKD compared a diet with phosphorus 
at maintenance concentrations (1.56% phosphorus, dry 
matter basis) to a restricted phosphorus diet (0.42% 
phosphorus, dry matter basis).46 Results showed that lower 
levels of phosphorus reduced fibrosis, mineralization, and 
other adverse effects on the kidneys. However, there were 
no significant changes in measures of renal function in 
either group.

Phosphate binders may aid in reducing blood phosphate 
accumulations in CKD when feeding a phosphate-restricted 
diet is not sufficient to maintain phosphorus below the 
upper limit of the target range recommended by IRIS.8,60 
Phosphate binders are also particularly useful in cats that 
refuse to eat a therapeutic renal diet.8 As the name implies, 
phosphate binders bind and “trap” dietary phosphate in 
the gut before it is absorbed, via formation of unabsorbable 
compounds that are then excreted in the feces.60
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In a model of CKD, researchers showed that cats fed 
maintenance diets and phosphate binders demonstrated 
decreases in serum phosphate and PTH levels.61 A 
phosphate binder containing calcium carbonate and 
chitosan significantly reduced plasma phosphorus and 
urea levels in geriatric cats with CKD; no significant 
changes were noted in plasma calcium levels.62

Cats with CKD fed a renal diet with or without a phosphate 
binder (added when phosphorus control was insufficient 
on the therapeutic diet alone) had a significant decrease 
in plasma urea and phosphate while CKD cats fed a 
maintenance diet did not.4 Plasma PTH significantly 
increased in cats fed the maintenance diet, while the 
phosphorus-restricted cats showed a trend towards a 
decrease in plasma PTH concentration.4

Since phosphate binders bind phosphate from the food, 
they should be given at or near mealtime.60,63 Initial dosage 
is based on the severity of hyperphosphatemia and on 
the concentration of phosphorus in the pet’s diet. Dosage 
is then adjusted based on effect.60,63 Constipation is a 
potential side effect associated with phosphate binders.16,60

Protein

The primary rationale for restricting dietary protein in cats 
with CKD is to reduce the accumulation of nitrogenous 
wastes—an accumulation that may result in clinical signs 
of uremia, e.g., nausea and vomiting. However, weight 
loss, cachexia, and protein malnutrition should also be 
avoided. (See earlier discussion under Maintaining Body 
Weight and Lean Body Mass.) While studies clearly show 
that therapeutic renal diets have a positive impact on cats 
with CKD, the impact of protein restriction is not defined. 

Among renal diets, protein is only one variable. In studies 
intended to evaluate effects of diet on renal function, the 
diets varied not only in protein, but also phosphorus and 
other minerals, fatty acids, and buffering agents, all of 
which can affect kidney function.4-7,64,65

Several studies have suggested that protein does not 
contribute to progression of renal disease. In one study, 
cats with CKD fed a diet with 51.7% protein on dry matter 
basis had a significantly higher mean serum urea nitrogen 
and a significantly lower mean urine specific gravity than 
cats fed a diet with 27.6% protein.64 However, many of the 
cats fed the high-protein diet also developed hypokalemia 
because the diet was deficient in potassium; low potassium 
levels have a negative impact on the kidneys and can 
induce kidney disease.66 By the time the potassium 
deficiency was corrected in the study, the cats had 
numerous markers of advanced CKD, which then improved 
as the study progressed. Further, cats fed the low-protein 
diet consumed fewer calories than cats eating the high-
protein diet. Due to these confounding factors, any effects 
from protein levels could not be confirmed.

To tease out the effects of protein on CKD, Finco et al. 
studied four groups of cats with CKD that were fed diets 
with different protein and calorie amounts.65 High protein 
intake did not affect CKD progression relative to low protein 
intake. 

Although CKD in dogs is different from the disease in cats, a 
two-year study of dietary phosphorus and protein levels in 
dogs with CKD showed that survival was longer with low-
phosphorus diets.67 The level of protein did not adversely 
affect survival, GFR, or renal morphology by the end of the 
study.

IRIS stage 
of CKD

IRIS target range for plasma phosphate concentration42

1 0.9–1.5 mmol/L (2.7–4.6 mg/dL)
2 0.9–1.5 mmol/L (2.7–4.6 mg/dL)

3 0.9–1.6 mmol/L (2.7–5.0 mg/dL)
4 0.9–1.9 mmol/L (2.7–6.0 mg/dL)
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Nutritional management can help cats live with CKD 
for many years. The challenge is to balance the unique 
nutrient needs of cats with dietary modifications that 
will help reduce clinical signs and slow progression 
of disease.

Studies suggest that higher dietary protein levels 
promote optimal body condition in aging cats and 
help reduce the natural, age-related loss of lean body 
mass.68 In early-stage CKD, higher levels of protein 
may help reduce loss of lean body mass and the 
higher mortality rates associated with loss of lean 
body mass in aging cats with CKD.34-36,40 However, as 
CKD progresses, more moderate levels of protein may 
be needed to reduce signs of uremia while striving to 
maintain calorie intake and body weight.

The Significance of Proteinuria

While small amounts of protein may be present in the urine 
of healthy cats, when excessive amounts of protein are 
found, it is known as proteinuria. (See guidelines for sub-
staging based on degree of proteinuria under the Staging 
CKD in Chronic Kidney Disease section.) CKD-associated 
proteinuria results from:13,69-72

 ■ Damage to or changes in permeability 
(“permselectivity”) of the glomerular filtration barrier, 
allowing excessive amounts of protein to cross.

 ■ Lesions that compromise the ability of the proximal 
tubular epithelial cells to reabsorb the filtered protein. A 
lower degree of proteinuria is typical for tubular lesions 
versus lesions in the glomerular filtration barrier.

 ■ Lesions affecting both the glomerular filtration barrier 
and the tubular epithelial cells. 

Although there is not enough data to accurately determine 
incidence, evidence thus far suggests that most cats with 
CKD are not proteinuric.8 Those cats with proteinuria 
usually have milder proteinuria compared to dogs and 
humans with CKD.9 This is likely due to cats typically 
having primary tubulointerstitial disease versus primary 
glomerular disease more common in dogs and humans.9,11,15

Glomerular disease in people with CKD is most often 
secondary to diabetes, hypertension, or other problems 
that have already compromised overall health and kidney 
function.9,73 In people with renal injury, protein intake is 
correlated with increased proteinuria, and dietary protein 
restriction with decreased proteinuria.74-77 

However, when cats with CKD were fed varying levels of 
dietary protein, the degree of proteinuria was unrelated to 
protein intake.7,65 Additionally, a pair of studies that used 
angiotensin-converting enzyme (ACE) inhibitors to manage 
proteinuric CKD cats showed that reductions in proteinuria 
were independent of protein intake.78,79

Even though it is typically mild, proteinuria has 
been shown to be a marker for CKD in cats and 
should be addressed:70

 ■ Research has shown that healthy senior cats with 
proteinuria were more likely to become azotemic within 
the next year than cats that were not proteinuric.80

 ■ Proteinuria is associated with CKD progression.11,30,81 Cats 
in IRIS stage 2–4 CKD with proteinuria were more likely 
to progress (defined as ≥ 25% increase in creatinine) 
within a year than those that were not proteinuric at 
baseline.30

It remains unknown as to whether proteinuria is only 
a marker indicating the severity of tubulointerstitial 
inflammation or an active contributor to progression. 
Progression could occur via the excess filtered protein 
reaching and overwhelming the ability of the proximal 
tubular epithelial cells to reabsorb the protein, which 
could lead to secretion of cytokines and chemokines 
from the cells and ultimately promote tubulointerstitial 
inflammation.14,30,70

 ■ The degree of proteinuria is a poor prognostic indicator 
for survival in cats with CKD.14,82,83 Research showed 
that the hazard ratio for death or euthanasia was 2.9 for 
CKD cats with borderline proteinuria at baseline (study 
enrollment) compared to non-proteinuric CKD cats.14 The 
hazard ratio was 4.0 for CKD cats that were proteinuric 
at baseline compared to non-proteinuric CKD cats.
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Alkalinizing Buffers

The kidneys maintain acid-base balance in the body 
by reabsorbing bicarbonate in the renal tubules and 
eliminating acids derived from the diet (especially sulfur-
containing amino acids) and from metabolism.12 When GFR 
decreases in CKD, acids are retained in the bloodstream, 
which may overwhelm the body’s bicarbonate buffering 
capacity and result in metabolic acidosis.12,16 Associated 
clinical signs include vomiting, anorexia, and lethargy.84

Metabolic acidosis appears more frequently in cats with 
advanced disease.85,86 One study reported just over 50% of 
cats with plasma creatinine ≥ 400 µmol/L were acidotic 
compared to no cats with mild disease (plasma creatinine 
≤ 250 µmol/L) and only 15% of those with moderate 
disease (plasma creatinine between 251 and 399 µmol/L).86 
Therapeutic renal diets often contain an alkalinizing 
buffer, such as potassium citrate, potassium chloride, and/
or calcium carbonate.16,59 An alkalinizing agent may be 
supplemented in addition to the diet if needed.16,59

Potassium

Hypokalemia has been reported in approximately 20–30% 
of cats with CKD.13,59 Hypokalemia may occur for several 
reasons, including poor appetite, metabolic acidosis, and/
or chronic stimulation of the renin-angiotensin-aldosterone 
system (RAAS) as is believed to occur in CKD. During RAAS 
activation, aldosterone acts on the kidneys to promote 
potassium excretion while promoting sodium and water 
reabsorption.29,59,84,87 Higher levels of potassium are found 
in therapeutic renal diets.59 Potassium is also available 
in a supplement form (e.g., in a powder, tablet, gel) as 
potassium gluconate or potassium citrate.16,59

Omega-3 Fatty Acids

Research has explored the benefits of supplementing the 
anti-inflammatory omega-3 fatty acids eicosapentaenoic 
acid (EPA) and docosahexaenoic acid (DHA) to cats with 
CKD. A retrospective study found that cats with CKD fed 
therapeutic renal diets had longer survival times than cats 
fed owner-selected maintenance diets.6 Of note, the cats 
fed the therapeutic diet containing the highest level of EPA 

out of the seven therapeutic diets evaluated survived the 
longest—a median of 23 months compared to 7 months for 
cats fed the owner-selected maintenance diets.

Fiber/Prebiotics

Supplementation with prebiotics has been shown to 
reduce circulating levels of uremic toxins in cats with 
CKD.88 Research in other species suggests that this decrease 
may occur due to a shift in the gut microbiome, resulting 
in fewer protein-fermenting bacteria, and by improving 
damage to the gut epithelial tight junctions.89 (See further 
discussion in The Gut-Kidney Axis section.) However, fiber 
can decrease nutrient digestibility and decrease the energy 
density of a diet, so high-fiber diets are not recommended 
for patients with CKD.

Antioxidants

Research suggests that increased oxidative stress plays a 
role in the pathogenesis of feline CKD.90,91 Results of one 
study showed that feeding cats with CKD a diet enriched 
with antioxidants (vitamins E and C and beta-carotene) 
reduced several indicators of oxidative stress.92 The most 
beneficial antioxidants and the most effective inclusion 
concentrations of antioxidants are not yet known.93

ADDRESSING POOR 
APPETITE

Ensuring adequate energy intake is a crucial part of 
nutritional management of any disease, including CKD.8,29,45 
However, in a survey of CKD cat owners, 43% reported that 
their cat had an abnormal appetite.94

A cat with CKD may exhibit inappetence due to resistance 
to a dietary change.8 To facilitate the diet change, a cat with 
CKD ideally should be transitioned to a therapeutic renal 
diet prior to development of nausea or other signs, i.e., by 
early IRIS stage 2 CKD.8,16,95 A gradual transition, typically 
over 2–4 weeks in cats with CKD, may help with acceptance 
of the new diet.29,93,95 
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Separate bowls for the current food and the renal diet 
should be used; mixing the foods in the same bowl is not 
advised.93 This is a stress-reducing tactic that allows cats to 
choose between the foods rather than having the change 
imposed upon them.95

A small amount of very palatable food, or palatable 
probiotics, flavored hydration supplements, or dry cat 
treats, can be added to a therapeutic diet to increase 
acceptance during the transition phase.29,63 Added calories 
that are not complete and balanced should account for no 
more than 10% of daily intake.29

To avoid development of a conditioned taste 
aversion, a therapeutic renal diet should not be 
introduced when the cat is hospitalized.29,93,95 In 
hospitalized cats, for short-term feeding only, a 
complete and balanced highly palatable, highly 
digestible, energy-dense diet is appropriate, 
avoiding any of the cat’s favorite foods.

If both wet and dry commercial renal diets from multiple 
pet food manufacturers have been offered to and refused 
by a cat with CKD, a home-cooked renal diet formulated 
by a veterinary nutritionist is another option.8 Feeding 
home-cooked diets can be challenging in cats in general 
due to, e.g., owner compliance (e.g., changing the recipe), 
supplement acceptance, and the potential for cats to 
selectively eat only the protein source.

In cases in which a cat with CKD will not accept a 
therapeutic renal diet, a feeding tube may be placed 
through which to provide a therapeutic renal diet.29 
Alternatively, some senior diets may have a reduced level 
of phosphorus relative to the cat’s previous maintenance 
diet and could be considered.8 The manufacturers of 
the diets should be contacted to obtain the phosphorus 
concentration (g/100 kcal preferred for comparison). 
However, since all over-the-counter diets must meet 
maintenance minimum requirements for phosphorus, a 
level that is higher than what is recommended for cats with 
CKD, this is not an ideal option. A phosphate binder may 
be beneficial.8

Cats in more advanced stages of CKD are more likely to 
have a poor appetite.8,29 In these cases, interventions that 
may help increase food intake include:

 ■ Nausea should be addressed.29,96

 ■ Appetite stimulants can be administered.29

 ■ Smaller meals, especially with wet food, should be 
offered more frequently.29

 ■ Food can be offered at different temperatures, e.g., at 
room temperature or gently warmed, as the cat prefers.29

 ■ Even when feeding only one food, more than one bowl 
of food can be offered.

An example protocol for transitioning a cat with CKD to a renal diet. 
The exact protocol needed will depend on the cat. Some cats may 
readily accept the new diet, allowing for a faster transition, while 
others may need an even slower transition.29

Figure 3:
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 ■ An endpoint to mealtimes should be set to prevent 
constant exposure to food odors that may promote 
nausea or impact future consumption.

 ■ Variety and novelty (when possible) may increase 
appetite.29

 ■ Stress should be avoided as much as possible.29,97 In 
hospitalized cats, creating a positive environment, 
e.g., by having the owner bring an item from home that 
smells familiar, may help reduce stress.97

 ■ If very rewarding to the cat, petting, grooming, or other 
social interaction may stimulate the cat to eat.29 If 
effective, the cat will eat after sated on the interaction.

 ■ Again, if rewarding to the cat, the owner or, when the 
cat is hospitalized, a well-liked member of the veterinary 
team can be nearby during mealtime but should not 
hover over the cat. At home, feeding the cat when and 
where the human members of the household are eating 
may help.

 ■ Multiple options for feeding dishes, e.g., bowl and plate, 
can be offered to determine if the cat has a preference. 
The containers should not retain odors. Typically, this 
would be a stainless steel or ceramic, not a plastic, dish. 
Bowls, plates, or other containers should be cleaned 
before each feeding.

 ■ Food should be stored in airtight packaging to ensure 
freshness and to avoid other odors or tastes transferring 
onto food.

For cats that remain inappetent despite the above 
interventions, a feeding tube should be discussed with the 
owner and placed to ensure sufficient caloric intake over 
the long term.8,93,97 

ENSURING ADEQUATE 
HYDRATION

Cats with CKD are at risk for dehydration. They are often 
polyuric (secondary to hyposthenuria) and polydipsic. 
Dehydration results when more fluid is lost than 
consumed. This affects acid-base and electrolyte balance 
and often manifests with clinical signs such as lethargy, 
anorexia, and/or constipation.16,29,93,98 Dehydration may 
also impair perfusion of renal tissues, which leads to 
progression of disease.12,29,93

Water intake may be promoted by feeding a wet renal diet 
or a dry food with added water, and/or offering flavored 
hydration supplements.29 Purina researchers found healthy 
cats offered a specially-formulated, nutrient-enriched, 
flavored water supplement consumed more water.99,100 

The use of a water fountain or other source of free-falling 
water, e.g., water from a tap, or circulating water may 
increase water intake. Research with healthy cats has 
suggested that individual cats may prefer one method of 
water delivery over another.101 Thus initially, options should 
be offered to identify the preferred option if the cat has one. 

Other recommendations include offering multiple water 
bowls, using wide bowls (so that the cat’s whiskers do 
not touch the sides of the bowl), and using stainless steel 
or ceramic bowls. Regardless of how water is offered, it 
should always be clean and fresh.

Subcutaneous fluids on a periodic basis at home or in the 
clinic may help maintain hydration. Intravenous fluids are 
indicated for cats in advanced stages. In cats with a feeding 
tube, water may be provided via the feeding tube.
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EMERGING SERUM AND 
URINARY BIOMARKERS

Biomarkers are used to diagnose CKD, monitor progression 
and response to management, and gauge prognosis. 
Early detection of CKD is valuable since this presents 
the opportunity for early intervention, which may 
improve prognosis.102 Key measures currently used to 
monitor CKD progression and response to management 
are blood creatinine, SDMA, urea nitrogen, phosphate, 
calcium, sodium, and potassium; hematocrit; as well 
as urine specific gravity and severity of proteinuria, if 
present.8,11,13,30,69,70,103 Prognosis is currently based on the IRIS 
stage and sub-stage.63

A biomarker recently added to IRIS recommendations for 
monitoring of progression and management is FGF-23.42 
Circulating FGF-23 levels appear to be a sensitive indicator 
of kidney function:

 ■ In healthy non-azotemic senior cats (over 9 years of 
age), plasma FGF-23 levels were significantly higher at 
baseline in cats that became azotemic within the next 
12 months versus cats that remained non-azotemic.104 
In another group of senior cats (healthy or with kidney 
disease), plasma FGF-23 concentrations had a negative 
exponential association with GFR.104

 ■ Measurement of serum FGF-23 may help detect disease 
in its earlier stages.2,105 Since increased secretion of FGF-
23 in response to rising serum phosphate may initially 
maintain serum phosphate within normal reference 
range, elevated FGF-23 levels may be detected prior to 
development of hyperphosphatemia.2,105 

Research showed that serum FGF-23 was significantly 
higher in cats beginning at stage 1 of CKD compared to 
healthy controls.2 This contrasted with a significantly 
elevated serum phosphorus only in stage 3 and 4 CKD 
cats compared to healthy control cats. 

Results indicated that despite normal serum phosphorus 
levels, phosphate regulation is changed in early CKD. 

Results suggest that measurement of FGF-23 could be 
useful in determining when in early CKD to institute 
phosphorus restriction (see Phosphorus under Targeted 
Nutritional Strategies).2,105  

 ■ In another study of senior cats, plasma FGF-23 
concentrations were significantly different between 
healthy controls, stage 2 CKD, stage 3 CKD, and stage 4 
CKD cats.106 Plasma FGF-23 concentrations also differed 
significantly within stage 2 and stage 3 cats between 
those with plasma phosphate concentrations within IRIS 
recommended levels and those with plasma phosphate 
above IRIS recommendations. 

 ■ A retrospective study linked a significant decline in 
plasma FGF-23 concentrations to feeding a therapeutic 
renal diet in feline CKD patients, whether or not the cats 
were hyperphosphatemic (as per IRIS targets for plasma 
phosphate concentrations at each stage) when the diet 
was started.5 However, plasma phosphate and PTH 
concentrations significantly declined only in those cats 
that were hyperphosphatemic at initiation of feeding the 
renal diet. 

Results suggested that phosphate balance is affected 
by feeding a phosphate-restricted diet irrespective of 
significant alterations in plasma phosphate levels. Thus, 
FGF-23 levels may act as a marker not just for when 
to initiate phosphate restriction but also for whether 
phosphate is being restricted sufficiently.

 ■ FGF-23 also may have prognostic potential.3 A 
retrospective study of azotemic senior CKD cats showed 
that a 10x higher plasma concentration of FGF-23 at the 
time of CKD diagnosis correlated with a nearly 3x risk of 
progression (defined as at least a 25% increase in plasma 
creatinine) within 1 year.3 The same study reported 
that as plasma FGF-23 concentrations at CKD diagnosis 
increased, duration of survival (all-cause mortality) 
decreased.

 ■ The relationship between FGF-23 and progression or 
survival is not yet fully understood—researchers have 
questioned if FGF-23 is merely a marker or is a uremic 
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toxin contributing to progression of CKD.3 More studies 
are needed to understand the complex interactions of 
FGF-23 in the kidneys and parathyroid glands.

Biomarkers that have received interest but are not yet 
routinely recommended to diagnose CKD, evaluate 
progression, and/or assess prognosis include the following:

 ■ PTH. As would be expected, research has shown an 
association between PTH and phosphate concentrations 
in the circulation55 and between PTH and FGF-23 
concentrations.2,104 Plasma PTH and phosphate 
concentrations were significantly greater in cats with 
CKD than healthy controls.55

One study has suggested that elevated PTH may be an 
early marker for development of CKD.107 Despite a lack of 
significant differences between groups of healthy senior 
cats in plasma calcium and phosphate concentrations 
at baseline, cats that were azotemic at the follow-up 
evaluation one year later had had significantly higher 
plasma PTH values at baseline than those that remained 
non-azotemic.  

 ■ Indoxyl sulfate. Bacteria in the colon metabolize 
unabsorbed nutrients. Fermentation of protein and 
amino acids by colonic bacteria yields metabolic waste 
products known as uremic toxins, such as indole, which 
is generated by metabolism of dietary tryptophan.108 

In health, indole and other uremic toxins are absorbed 
from the gut, potentially metabolized (indole is 
metabolized to indoxyl sulfate by the liver), and then 
excreted by the kidneys. However, a decreased GFR can 
cause uremic toxins to accumulate in the bloodstream 
at which point they may have adverse effects on the 
kidneys and throughout the body.109-113 

Indoxyl sulfate induces oxidative stress and plays a role 
in development of tubulointerstitial fibrosis.109,111 Thus, 
indoxyl sulfate is a biomarker of CKD and, as a uremic 
toxin, contributes to kidney damage.

Cats in IRIS stages 2–4 CKD were shown to have 
significantly higher circulating levels of indoxyl sulfate 

than healthy senior cats.108,114 One study found that 
while plasma concentrations did not differ significantly 
between stage 2 and 3 cats, stage 4 cats had significantly 
higher levels of indoxyl sulfate than stage 2 and 3 cats.108 
Researchers also noted a significant association between 
plasma indoxyl and serum creatinine, BUN, and serum 
phosphorus concentrations.

Other research found that cats with azotemic CKD 
that progressed had significantly higher plasma levels 
of indoxyl sulfate in addition to lower hematocrit 
and hemoglobin, and higher serum phosphate at 
baseline than cats that did not progress.115 In this study, 
progression was defined as moving up one IRIS stage 
or having an increase in serum creatinine of at least 0.5 
mg/dL within the same IRIS stage within 3 months. On 
a within-stage basis, cats in stage 2 or 3 that progressed 
had significantly higher indoxyl sulfate levels at 
baseline than cats in stage 2 or 3, respectively, that did 
not progress. Plasma indoxyl sulfate was judged to 
independently predict CKD progression. 

In a retrospective study in which progression of CKD 
was defined as an increase in serum creatinine of at 
least 0.5 mg/dL or death or euthanasia within 3 months, 
stage 2 or 3 cats that progressed had significantly higher 
plasma indoxyl sulfate and FGF-23 than those cats that 
did not progress.116 While measuring either indoxyl 
sulfate or FGF-23 predicted progression, evaluating 
both biomarkers together provided a better gauge of 
progression versus using one or the other by itself. 

 ■ Transforming growth factor-beta (TGF-β). Research 
found that levels of the profibrotic cytokine TGF-β in 
the urine were significantly higher in cats with CKD 
compared to healthy control cats.117,118 CKD cats could 
be in IRIS stages 2–4 based on study inclusion criteria. 
Evaluation of urinary TGF-β levels in stage 1 of CKD and 
comparison of levels in cats at different stages of CKD 
may reveal that urinary TGF-β is useful not only as a 
marker of CKD but as a biomarker of early disease and/
or of disease progression, i.e., worsening of fibrosis.
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 ■ Interleukin-8 (IL-8). IL-8 is secreted by inflammatory 
cells. As a chemokine, it promotes the infiltration 
of additional white blood cells to the area, thus 
contributing to the cycle of inflammation and fibrosis in 
the affected kidney(s).118 

A study showed that urinary levels of IL-8 were 
significantly higher in cats with CKD versus healthy 
control cats.118 This study included only those cats with 
CKD stage 2 or above and did not compare urinary 
levels of IL-8 among different stages of CKD. Research 
measuring levels in stage 1 CKD and comparing levels 
among stages 1, 2, 3, and 4 of CKD may show that this 
biomarker is useful for early detection and/or to monitor 
progression of disease.

Urinary biomarkers known as injury biomarkers 
indicate active renal injury and/or indicate 
dysfunction due to previous or active injury.72 
Injury biomarkers may help detect disease or 
progression of disease and could be used in 
combination with functional biomarkers, e.g., 
blood creatinine and SDMA.19,72,119

 ■ Heat shock protein-72. Urinary levels of this injury 
biomarker were shown to be correlated with all-cause 
mortality in cats with CKD.119 Cats with a urinary heat 
shock protein-72-to-urinary creatinine ratio of less 
than or equal to 4.2 ng/mg survived significantly 
longer (median of 561 versus 112 days) than cats with a 
ratio above 4.2 ng/mg. Researchers suggested further 
investigation to determine if urinary heat shock 
protein-72 could also be useful as an indicator of early 
CKD and/or progression.

 ■ Neutrophil gelatinase-associated lipocalin (NGAL). 
Urinary NGAL is a biomarker indicating proximal 
tubular epithelial damage.120 Research showed that 
urinary levels of NGAL and the urinary NGAL-to-
creatinine ratio (UNCR) were significantly higher in 
cats with stage 3 or 4 CKD compared to healthy cats or 

cats with stage 2 CKD.121 Levels did not differ between 
cats with stage 2 CKD and healthy controls. Thus, while 
increased in later-stage CKD, the biomarker did not 
detect early disease. Urinary NGAL and UNCR were 
significantly higher in CKD cats that progressed within 
one month (defined as an increase greater than 0.5 mg/
dL in serum creatinine) than in those cats that did not 
progress. 

Another study found that while urinary levels of NGAL 
did not differ between CKD and healthy control cats, 
UNCR was significantly higher in cats with stage 3 CKD 
compared to healthy cats or cats with stage 2 CKD.122 

Results also showed the ratio was significantly higher in 
stage 4 CKD compared to all other groups. 

While those studies were promising, more recent 
research evaluated only UNCR and found no significant 
differences between healthy cats and cats with CKD.123 
Additional research is necessary to determine whether 
urinary NGAL and/or UNCR are useful biomarkers for 
CKD in cats.

 ■ Research thus far suggests that neither serum nor 
urinary cystatin C is a useful biomarker in cats with 
CKD.120,124 One study showed that serum cystatin C had 
poor sensitivity (22% sensitivity versus 83% for serum 
creatinine in detecting reduced GFR), while urinary 
cystatin C could not be detected in nearly 30% of the 
cats with CKD.124

In the future, use of biomarkers that may more 
accurately predict, assess, and monitor renal 
dysfunction may lead to more precise nutritional 
strategies to help cats with CKD live better, 
longer lives.



14  

THE GUT-KIDNEY AXIS

A bidirectional relationship, known as the gut-kidney axis, 
exists between the intestinal tract and the kidneys.125 As 
has been described in humans with CKD,125-128 CKD in cats 
is associated with gut dysbiosis.114 Reduced diversity and 
richness of fecal bacteria were reported in cats with IRIS 
stages 2–4 CKD versus healthy senior cats.114 

As noted earlier (see Emerging Serum and Urinary 
Biomarkers section), uremic toxins may accumulate in the 
bloodstream in CKD secondary to decreased GFR. CKD-
associated dysbiosis may also contribute to the elevated 
concentrations of uremic toxins in the circulation:

 ■ Greater concentrations of uremic toxins may be 
produced due to altered fermentation of protein and 
amino acids secondary to dysbiosis.129

 ■ Dysbiosis may alter gut wall permeability (“leaky 
gut syndrome,” due, at least in part, to compromised 
gut epithelial tight junctions),127,130 allowing higher 
concentrations of uremic toxins to cross the gut wall 
and reach the circulation.129 This also may permit the 
translocation of bacteria and bacterial endotoxins across 
the gut wall into the circulation.127,130 

The presence of increased concentrations of uremic toxins, 
bacteria, and bacterial endotoxins in the circulation 
promotes inflammation throughout the body, including 
in the kidneys, and may be a contributing factor to CKD 
progression.127,130

Branched-chain short-chain fatty acids (SCFA) are also 
produced during fermentation of protein by colonic 
bacteria.131 The significance of this is:

 ■ Research showed that cats with CKD stages 2–4 had 
significantly higher fecal levels of isovaleric acid, a 
branched-chain SCFA, and significantly more muscle 
atrophy than healthy senior cats.131 Cats with muscle 
atrophy had significantly higher fecal levels of isovaleric 
acid, isobutyric acid (another branched-chain SCFA), 

and total branched-chain SCFA compared to normal-
muscled cats. 

 ■ A positive association was found between fecal total 
branched-chain SCFA levels and concentrations of 
serum creatinine, BUN, and serum p-cresol sulfate, 
a uremic toxin.131 Increased serum concentrations of 
uremic toxins114 and increased fecal concentrations of 
branched-chain SCFA suggest the presence of protein 
malassimilation in cats with CKD,131 which may affect 
dietary protein needs. 

Researchers suggested that additional research 
be conducted exploring how the gut microbiome, 
branched-chain SCFA production in the colon, protein 
malassimilation, and CKD in cats are related.131 Future 
research in fecal biomarkers for feline CKD may also be 
needed. 
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Feeding therapeutic renal diets and other nutritional interventions tailored to the 
individual cat with CKD can play a key role in slowing disease progression, reducing 
signs of uremia, addressing homeostatic changes that result from decreased 
renal function, and improving quality of life as well as life span. New biomarker 
development and a deeper understanding of the extent and ramifications of the 
gut-kidney axis may enable even more targeted nutritional care for cats with CKD.
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