体重相关状况

体重相关状况 - 横幅

肥胖症是指体内脂肪组织过量积聚。1

脂肪组织不仅可储存多余能量,也是一个活跃的内分泌器官。

脂肪细胞会分泌多种激素、细胞因子及其他蛋白质因子(统称为脂肪因子),这些因子可对身体其他部分产生生物学影响。

研究表明,肥胖症可导致慢性、低度炎症状态,2 这种情况会使宠物更易罹患骨关节炎和糖尿病等疾病。

肥胖症。超重产生的机械效应。慢性炎症、炎症介质和激素、脂肪组织。氧化应激,加速细胞损伤。生理后果:胰岛素抵抗、关节应力。潜在风险:疾病、跛足、糖尿病。

将肥胖症与疾病关联起来的科学

脂肪组织可产生 100 多种脂肪因子,这些因子可产生从食欲调节到血压控制的全身性影响。其中包括促炎性细胞因子,如肿瘤坏死因子-α (TNF-α)、白细胞介素-6 和 C 反应蛋白。3

肥胖症可改变脂肪因子的分泌。在人类肥胖症研究中,血液中的炎症细胞因子水平呈全身升高趋势。4 同样,Purina 及其他机构的研究表明,与体型精瘦的宠物相比,肥胖猫、犬体内的炎症性脂肪因子浓度更高。5-10

脂肪组织 - 止血和血液动力学因子(血管紧张素原 PAI-1)、趋化因子(MCP-1 和 MIF)、神经营养因子 (NGF)、食欲和能量平衡(瘦素和脂联素)、细胞因子(TNF-α、IL-1β、IL-6、IL-10、IL-18、TGF-β)、脂肪酸、甘油、胆固醇和类固醇激素、急性期蛋白(SAA、CRP、金属硫蛋白、触珠蛋白)
脂肪组织分泌的各种脂肪因子。TNF-α = 肿瘤坏死因子-α;IL = 白细胞介素;TGF-β = 转化生长因子-β;SAA = 血清淀粉样蛋白 A;CRP = C 反应蛋白;PAI-1 = 纤溶酶原激活物抑制剂-1;MCP-1 = 单核细胞趋化蛋白-1;MIF = 巨噬细胞迁移抑制因子;NGF = 神经生长因子。(改编自 German 等人,2010)
寿命缩短、氧化应激、骨关节炎、炎症、胰岛素抵抗、糖尿病、脂肪肝、口腔疾病、皮肤病、下尿路疾病、心肺功能改变、高甘油三酯血症。

由于脂肪组织(更具体而言是白色脂肪组织)是这些炎性化合物的来源,炎症性脂肪因子水平升高似乎可将肥胖症与许多体重相关疾病关联起来。3,11

例如,在肥胖症中,胰岛素抵抗与 TNF-α 水平升高有关,TNF-α 是一种可阻止胰岛素受体激活的细胞因子。12-15

研究还表明,肥胖症与自由基的大量产生存在关联,进而导致氧化应激增强。氧化应激会导致组织损伤,从而加剧许多疾病的发展。16,17

这些不良反应中有许多可随着体重下降而减轻或逆转。5,7,13, 18-20

需记住的要点

  • 脂肪组织是一种活跃的内分泌器官,会分泌多种激素、细胞因子及其他蛋白质因子(统称为脂肪因子),这些因子可从生物学角度对全身产生影响。
  • 在肥胖症中,影响胰岛素抵抗、炎症、氧化应激和其他生物学功能的脂肪因子可发生改变。
  • 体重下降与作为炎症生物标志物的脂肪因子减少存在关联。

探索健康体重管理领域

了解更多信息

  1. Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404 (6778), 635–643.
  2. Trayhurn, P., & Wood, I. S. (2005). Signalling role of adipose tissue: Adipokines and inflammation in obesity. Biochemical Society Transactions, 33(Pt 5), 1078–1081.
  3. German, A. J., Ryan, V. H., German, A. C., Wood, I. S., & Trayhurn, P. (2010). Obesity, its associated disorders and the role of inflammatory adipokines in companion animals. Veterinary Journal, 185(1), 4–9.
  4. Zorena, K., Jachimowicz-Duda, O., Ślęzak, D., Robakowska, M., & Mrugacz, M. (2020). Adipokines and obesity. Potential link to metabolic disorders and chronic complications. International Journal of Molecular Sciences, 21(10), 3570.
  5. Bastien, B. C., Patil, A., & Satyaraj, E. (2015). The impact of weight loss on circulating cytokines in Beagle dogs. Veterinary Immunology and Immunopathology, 163(3–4), 174–182.
  6. Eirmann, L. A., Freeman, L. M., Laflamme, D. P., Michel, K. E., & Satyaraj, E. (2009). Comparison of adipokine concentrations and markers of inflammation in obese versus lean dogs. International Journal of Applied Research in Veterinary Medicine, 7(4), 196–205.
  7. Wakshlag, J. J., Struble, A. M., Levine, C. B., Bushey, J. J., Laflamme, D. P., & Long, G. M. (2011). The effects of weight loss on adipokines and markers of inflammation in dogs. The British Journal of Nutrition, 106 Suppl 1, S11–S14.
  8. Vester, B. M., Sutter, S. M., Keel, T. L., Graves, T. K., & Swanson, K. S. (2009). Ovariohysterectomy alters body composition and adipose and skeletal muscle gene expression in cats fed a high-protein or moderate-protein diet. Animal, 3(9), 1287–1298.
  9. Park, H.-J., Lee, S.-E., Oh, J.-H., Seo, K.-W., & Song, K.-H. (2014). Leptin, adiponectin and serotonin levels in lean and obese dogs. BMC Veterinary Research, 10, 113.
  10. Jeusette, I. C., Detilleux, J., Shibata, H., Saito, M., Honjoh, T., Delobel, A., Istasse, L., & Diez, M. (2005). Effects of chronic obesity and weight loss on plasma ghrelin and leptin concentrations in dogs. Research in Veterinary Science, 79, 169–175.
  11. Laflamme, D. P. (2012). Obesity in dogs and cats: What is wrong with being fat? Journal of Animal Science, 90, 1653–1662.
  12. Gayet, C., Bailhache, E., Dumon, H., Martin, L., Siliart, B., & Nguyen, P. (2004). Insulin resistance and changes in plasma concentration of TNFalpha, IGF1, and NEFA in dogs during weight gain and obesity. Journal of Animal Physiology and Animal Nutrition, 88(3–4), 157–165.
  13. Blanchard, G., Nguyen, P., Gayet, C., Leriche, I., Siliart, B., & Paragon, B.-M. (2004). Rapid weight loss with a high-protein low-energy diet allows the recovery of ideal body composition and insulin sensitivity in obese dogs. Journal of Nutrition, 134, 2148S–2150S.
  14. Miller, C., Bartges, J., Cornelius, L., Norton, N., & Barton, M. (1998). Tumor necrosis factor-alpha levels in adipose tissue of lean and obese cats. The Journal of Nutrition, 128(12 Suppl), 2751S–2752S.
  15. Plomgaard, P., Bouzakri, K., Krogh-Madsen, R., Mittendorfer, B., Zierath, J. R., & Pedersen, B. K. (2005). Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes, 54(10), 2939–2945.
  16. Sonta, T., Inoguchi, T., Tsubouchi, H., Sekiguchi, N., Kobayashi, K., Matsumoto, S., Utsumi, H., & Nawata, H. (2004). Evidence for contribution of vascular NAD(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity. Free Radical Biology & Medicine, 37(1), 115–123.
  17. Tanner, A. E., Martin, J., Thatcher, C. D., & Saker, K. E. (2006). Nutritional amelioration of oxidative stress induced by obesity and acute weight loss. Compendium on Continuing Education for the Practicing Veterinarian, 28(4 SUPPL.), 72.
  18. Hoenig, M., Thomaseth, K., Waldron, M., & Ferguson, D. C. (2007). Insulin sensitivity, fat distribution, and adipocytokine response to different diets in lean and obese cats before and after weight loss. American Journal of Physiology – Regulatory, Integrative, and Comparative Physiology, 292, R227–R234.
  19. German, A. J., Hervera, M., Hunter, L., Holden, S. L., Morris, P. J., Biourge, V., & Trayhurn, P. (2009). Improvement in insulin resistance and reduction in plasma inflammatory adipokines after weight loss in obese dogs. Domestic Animal Endocrinology, 37, 214–226.
  20. Phungviwatnikul, T., Lee, A. H., Belchik, S. E., Suchodolski, J. S., & Swanson, K. S. (2022). Weight loss and high-protein, high-fiber diet consumption impact blood metabolite profiles, body composition, voluntary physical activity, fecal microbiota, and fecal metabolites of adult dogs. Journal of Animal Science, 100(2), skab379. doi: 10.1093/jas/skab379