References List

The following list provides references for the Advancing brain health content. The references have been organized by subsection and alphabetized by first author.

Omega-3 fatty acids and brain development

Gross, B., Garcia-Tapla, D., Riedesel, E., Ellinwood, N. M., & Jens, J. K. (2010). Normal canine brain maturation at magnetic resonance imaging. Veterinary Radiology and Ultrasound, 51, 361–373

Heinemann, K. M., & Bauer, J. E. (2006). Docosahexaenoic acid and neurologic development in animals. Journal of the American Veterinary Medical Association, 228, 700–705.                 

Heinemann, K. M., Waldron, M. K., Bigley, K. E., Lees, G. E., & Bauer, J. E. (2005). Long-chain (n-3) polyunsaturated fatty acids are more efficient than α-linoleic acid in improving electroretinogram responses of puppies exposed during gestation, lactation and weaning. Journal of Nutrition, 135, 1960–1966.  

Reynolds, A. J., Waldron, M., Wilsson, E., Leavitt, Y., Dunlap, A., Bailey, K. (2006). Effect of long-chain polyunsaturated fatty acid supplementation on mental stability, problem-solving ability, and learned pattern retention in young, growing dogs. Proceedings Nestlé Purina Nutrition Forum 2005, p. 74

Salem, N., Litman, B., Kim, H.-Y., & Gawrisch, K. (2001). Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids, 36, 945–959

Age-related changes in the brain

Alexander, J. E., Colyer, A. l., Haydock, R. M., Hayek, M. G., & Park, J. (2017). Understanding how dogs age: longitudinal analysis of markers of inflammation, immune function, and oxidative stress. Journals of Gerontology, 73, 720–728. doi:10.1093/gerona/glx182          

Borràs, D., Ferrer, I., & Pumarola, M. (1999). Age-related changes in the brain of the dog. Veterinary Pathology, 36, 202–211

Calder, P. C., Bosco, N., Bourdet-Sicard, R., Capuron, L., Delzenne, N., Doré, J. Visioli, F. (2017). Health relevance of the modification of low grade inflammation in ageing (inflammaging) and the role of nutrition. Ageing Research Reviews, 40, 95–119. doi: 10.1016/j.arr.2017.09.001

Chambers, J. K., Uchida, K., Nakayama, H. (2012). White matter myelin loss in the brains of aged dogs. Experimental Gerontology, 47, 263–269. doi: 10.1016/j.exger.2011.12.003       

Costantini, L. C., Barr, L. J., Vogel, J. L., & Henderson, S. T. (2008). Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neuroscience, 9(Suppl 2), article 516. doi: 10.1186/1471-2202-9-S2-S16

Cummings, B. J., Su, J. H., Cotman, C. W., White, R., & Russell, M. J. (1993). β-amyloid accumulation in aged canine brain: a model of early plaque formation in Alzheimer’s disease. Neurobiology of Aging, 14, 547–560

Cummings, B. J., Head, E., Afagh, A. J., Milgram, N. W., & Cotman, C. W. (1996). β-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiology of Learning and Memory, 66, 11–23

Cummings, B. J., Head, E., Ruehl, W., Milgram, N. W., & Cotman, C. W. (1996). The canine as an animal model of human aging and dementia. Neurobiology of Aging, 17, 259–268

Freemantle, E., Vandal, M., Tremblay-Mercier, J., Tremblay, S., Blachere, J.-C., Begin, M. E. Cunnane, S. C. (2006). Omega-3 fatty acids, energy substrates, and brain function during aging. Prostaglandins, Leukotrienes and Essential Fatty Acids 75, 213–220

González-Soriano, J., Marín García, P., Contreras-Rodríquez, J., Martínez-Sainz, P., & Rodríguez-Veiga, E. Age-related changes in the ventricular system of the dog brain. Annals of Anatomy, 183, 283–291

Grimm, A., Friedland, K., & Eckert, A. (2016). Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer’s disease. Biogerontology, 17, 281–296. doi: 10.1007/s10522-015-9618-4         

Head, E., Rofina, J., Zicker, S. (2008). Oxidative stress, aging, and central nervous system disease in the canine model of human brain aging. Veterinary Clinics of North America Small Animal Practice, 38, 167–178. doi: 10.1016/j.cvsm.2007.10.002

Head, E., Nukala, V. N., Fenoglio, K. A., Muggenburg, B. A., Cotman, C. W., & Sullivan, P. G. (2009). Effects of age, dietary, and behavioral enrichment on brain mitochondria in a canine model of human aging. Experimental Neurology, 220, 171–176. doi:10.1016/j.expneurol.2009.08.014         

Head, E. (2011). Neurobiology of the aging dog. Age, 33, 485–496. doi: 10.1007/s11357-010-9183-3          

Ivanisevic, J., Stauch, K. L., Petrascheck, M., Benton, H. P., Epstein, A. A., Fang, M. Siuzdak, G. (2016). Metabolic drift in the aging brain. Aging, 8, 1000–1013. doi: 10.18632/aging.100961              

London, E. D., Ohata, M., Takei, H., French, A. W., & Rapoport, S. I. (1983). Regional cerebral metabolic rate for glucose in beagle dogs of different ages. Neurobiology of Aging, 4, 121–126.

Mergenthaler, P., Lindauer, U., Dienel, G. A., & Meisel, A. (2013). Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in Neurosciences, 36, 587–597. doi: 10.1016/j.tins.2013.07.001    

Morita, T., Mizutani, Y., Sawada, M., & Shimada, A. (2005). Immunohistochemical and ultrastructural findings related to the blood-brain barrier in the blood vessels of the cerebral white matter in aged dogs. Journal of Comparative Pathology, 133, 14–22. doi:10.1016/j.jcpa.2005.01.001  

Nugent, S., Tremblay, S., Chen, K. W., Ayutyanont, N., Roontiva, A., Castellano, C.-A., Cunnane, S. C. (2014). Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiology of Aging, 35, 1386–1395. doi: 10.1016/j.neurobiolaging.2013.11.027

Papaioannou, N. (2014). Principles of age-related changes in the canine and feline brain. Acta Veterinaria-Beograd, 64, 1–9. doi: 10.2478/acve-2014-0001          

Pekcec, A., Baumgärtner, W., Bankstahl, Stein, V. M., & Potschka, H. (2008). Effect of aging on neurogenesis in the canine brain. Aging Cell, 7, 368–374. doi: 10.1111/j.1474-9726.2008.00392.x       

Siwak-Tapp, C. T., Head, E., Muggenburg, B. A., Milgram, N. W., & Cotman, C. W. (2007). Neurogenesis decreases with age in the canine hippocampus and correlates with cognitive function. Neurobiology of Learning and Memory, 88, 249–259. doi: 10.1016/j.nlm.2007.05.001

Smolek, T., Madari, A., Farbakova, J., Kandrac, O., Jadhav, S., Cente, M., Zilka, N. (2016). Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. Journal of Comparative Neurology, 524, 874–895. doi: 10.1002/cne.23877           

Studzinski, C. M., Christie, L.-A., Araujo, J. A., Burnham, W. M., Head, E., Cotman, C. W., & Milgram, N. W. (2006). Visuospatial function in the beagle dog: an early marker of cognitive decline in a model of human aging and dementia. Neurobiology of Learning and Memory, 86, 197–204

Su, M.-Y., Head, E., Brooks, W. M., Wang, Z., Muggenburg, B. A., Adam, G. E., Nalcioglu, O. (1998). Magnetic resonance imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiology of Aging, 19, 479–485.        

Su, M.-Y., Tapp, P. D., Vu, L., Chen, Y.-F., Chu, Y., Muggenburg, B., Head, E. (2005). A longitudinal study of brain morphometrics using serial magnetic resonance imaging analysis in a canine model of aging. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 389–397. doi: 10.1016/j.pnpbp.2004.12.005      

Tapp, P. D., Siwak, C. T., Gao, F. Q., Chiou, J.-Y., Black, S. E., Head, E., & Su, M.-Y. (2004). Frontal lobe volume, function, and B-amyloid pathology in a canine model of aging. Journal of Neuroscience, 24, 8205–8213. doi: 10.1523/JNEUROSCI.1339-04.2004                         

Yin, F., Sancheti H., Patil, I., Cadenas, E. (2016). Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radical Biology and Medicine, 100, 108–122. doi: 10.1016/j.freeradbiomed.2016.04.200                      

Yu, C.-H., Song, G.-S., Yhee, J.-Y., Kim, J.-H., Im, K.-S., Nho, W.-G., Sur, J.-H. (2011). Histopathological and immunohistochemical comparison of the brain of human patients with Alzheimer’s disease and the brain of aged dogs with cognitive dysfunction. Journal of Comparative Pathology, 145, 45–58. doi: 10.1016/j.jcpa.2010.11.004            

Cognitive decline

Cory, J. (2013). Identification and management of cognitive decline in companion animals and the comparisons with Alzheimer disease: A reviewJournal of Veterinary Behavior: Clinical Applications and Research, 8, 291–301.

Schütt, T., Toft, N., & Berendt, M. (2015). Cognitive function, progression of age-related behavioral changes, biomarkers, and survival in dogs more than 8 years old. Journal of Veterinary Internal Medicine, 201, 1569–1577. doi: 10.1111/jvim.13633      

Sueda, K., & Cho, J. (2017). Environmental enrichment for senior dogs & cats. Clinicians Brief. Retrieved from https://www.cliniciansbrief.com/article/environmental-enrichment-senior-dogs-cats

Vite, C. H. & Head, E. (2014). Aging in the canine and feline brain. Veterinary Clinics of North America Small Animal Practice, 44, 1113–1129. doi: 10.1016/j.cvsm.2014.07.008

Cognitive dysfunction

Coupland, S., Reynolds, H. (2018). Do dog owners recognize behavioural indicators of canine cognitive dysfunction and can environmental enrichment techniques slow its progression? Veterinary Nurse, 9, 118–123.    

Fast, R., Schϋtt, T., Toft, N., Møller, A., & Berendt, M. An observational study with long-term follow-up of canine cognitive dysfunction: clinical characteristics, survival, and risk factors. Journal of Veterinary Internal Medicine, 27, 822–829. doi: 10.1111/jvim.12109                    

Frank, D. (2002). Cognitive dysfunction in dogs. Presented at the Hill’s European Symposia on Canine Brain Ageing. Retrieved from http://www.ivis.org/proceedings/Hills/brain/frank.pdf

Gunn-Moore, D. A. (2010, March). Cognitive dysfunction in cats: clinical assessment and management. In Nestlé Purina Companion Animal Nutrition Summit, Clearwater Beach, FL.

Karagiannis, C., & Mills, D. (2014). Feline cognitive dysfunction syndrome. Veterinary Focus, 24, 42–47.       

Landsberg, G., Denenberg, S., & Araujo, J. (2010). Cognitive dysfunction in cats: a syndrome we used to dismiss as ‘old age.Journal of Feline Medicine and Surgery, 12, 837–848. doi: 10.1016/j.jfms.2010.09.004            

Landsberg, G. M., Nichol, J., & Araujo, J. A. (2012). Cognitive dysfunction syndrome: a disease of canine and feline brain aging. Veterinary Clinics of North America Small Animal Practice, 42, 749–768. doi: 10.1016/j.cvsm.2012.04.003   

McCune, S., Stevenson, J,.  Fretwell, L., Thompson, A., & Mills, D. S. (2008). Ageing does not significantly affect performance in a spatial learning task in the domestic cat (Felis silvestris catus). Applied Animal Behaviour Science 112, 345–356. doi: 10.1016/j.applanim.2007.08.013

Rajapaksha, E. (2018). Special considerations for diagnosing behavior problems in older pets. Veterinary Clinics of North America Small Animal Practice, 48, 443–456. doi: 10.1016/j.cvsm.2017.12.010    

Salvin, H. E., McGreevy, P. D., Sachdev, P. S., Valenzuela, M. J. (2010). Under diagnosis of canine cognitive dysfunction: a cross-sectional survey of older companion dogs. Veterinary Journal 184, 277–281.

Seisdedos Benzal, A., Galán Rodríguez, A. (2016). Recent developments in canine cognitive dysfunction syndrome. Pet Behaviour Science, 1, 47–59.      

Epilepsy

Berendt, M., Farquhar, R. G., Mandigers, P. J. J., Pakozdy, A., Bhatti, S. F. M., De Risio, L., Volk, H. A. (2015). International veterinary epilepsy task force consensus report on epilepsy definition, classification and terminology in companion animals. BMC Veterinary Research, 11, 182–193. doi: 10.1186/s12917-015-0461-2            

Bhatti, S., De Risio, L., Muñana, K., Penderis, J., Stein, V. M., Tipold, A, Volk, H. A. (2015). International veterinary epilepsy task force consensus proposal: medical treatment of canine epilepsy in Europe. BMC Veterinary Research, 11, 176–192. doi: 10.1186/s12917-015-0464-z          

Chang, Y., Mellor, D. J., & Anderson, T. J., (2006). Idiopathic epilepsy in dogs: owners’ perspectives on management with phenobarbitone and/or potassium bromide. Journal of Small Animal Practice, 47, 574–581            

Chang, P., Terbach, N., Plant, N., Chen, P. E., Walker, M. C., Williams, R. S. (2013). Seizure control by ketogenic diet-associated medium chain fatty acids. Neuropharmacology, 69, 105–114. doi: 10.1016/j.neuropharm.2012.11.004

De Risio, L., Bhatti, S., Muñana, K., Penderis, J., Stein, V., Tipold, A., Volk, H. A. (2015). International veterinary epilepsy task force consensus proposal: diagnostic approach to epilepsy in dogs. BMC Veterinary Research, 11, 148–153. doi: 10.1186/s12917-015-0462-1     

Kim, D. Y., Simeone, K. A., Simeone, T. A., Pandya, J. D., Wilke, J. C., Ahn, Y., Geddes, J. W., Sullivan, P. G., Rho, J. M. (2015). Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Annals of Neurology 78, 77–87. doi: 10.1002/ana.24424

Masino, S. A., Li, T., Theofilas, P., Sandau, U. S., Ruskin, D. N., Fredholm, B. B., Geiger, J. D., Aronica, E., Boison, D. (2011). A ketogenic diet suppresses seizures in mice through adenosine A₁ receptors. Journal of Clinical Investigation 121, 2679–2683. doi: 10.1172/JCI57813.

Neal, E. G., Chaffe, H., Schwartz, R. H., Lawson, M. S., Edwards, N., Fitzsimmons, G., Cross, J. H. (2009). A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia 50, 1109–1117. doi: 10.1111/j.1528-1167.2008.01870.x

Packer, R. M. A., Shihab, N. K., Torres, B. B. J., & Volk, H. A. (2015). Responses to successive anti-epileptic drugs in canine idiopathic epilepsy. Veterinary Record. 176(8):203. doi: 10.1136/vr.102934                             

Packer, R. M. A., Volk, H. A., & Fowkes, R. C. (2017). Physiological reactivity to spontaneously occurring seizure activity in dogs with epilepsy and their carers. Physiology & Behavior, 177, 27–33. doi: 10.1016/j.physbeh.2017.04.008     

Packer, R. M. A., McGreevy, P. D., Pergande, A., & Volk, H. A. (2018). Negative effects of epilepsy and antiepileptic drugs on the trainability of dogs with naturally occurring idiopathic epilepsy. Applied Animal Behaviour Science, 200, 106–113. doi: 10.1016/j.applanim.2017.11.008     

Packer, R. M. A., McGreevy, P. D., Salvin, H. E., Valenzuela, M. J., Chaplin, C. M., & Volk, H. A. (2018). Cognitive dysfunction in naturally occurring canine idiopathic epilepsy. PLOS One, 13(2):e0192182. doi: 10.1371/journal.pone.0192182

Viitmaa, R., Haaparanta-Solin, M., Snellman, M., Cizinauskas, S., Orro, T., Kussela, E.,Metsähonkala, L. (2014). Cerebral glucose utilization measured with high resolution positron emission tomography in epileptic Finnish Spitz dogs and healthy dogs. Veterinary Radiology and Ultrasound, 55, 453–461. doi: 10.1111/vru.12147

Volk, H. A. (2017). Management of canine epilepsy beyond drugs. In: Olby, N. J. & Jeffery, N. D. (Eds.), Advances in Veterinary Neurology Veterinary Clinics of North America Small Animal Practice (Purina promotional ed., pp. A1-A8). St. Louis, MO: Purina            

Wessmann, A., Volk, H. A., Parkin, T., Ortega, M., & Anderson, T. J. (2014). Evaluation of quality of life in dogs with idiopathic epilepsy. Journal of Veterinary Internal Medicine, 28, 510–514. doi: 10.1111/jvim.12328             

Winter, J., Packer, R. M. A., & Volk, H. A. (2018c). Preliminary assessment of cognitive impairments in canine idiopathic epilepsy. Veterinary Record. 182(22), 663. doi: 10.1136/vr.104603

Wlaź, P., Socała, K., Nieoczym, D., Łuszczki, J. J., Zarnowska, I., Zarnowski, T., Czuczwar, S. J., Gasior, M. (2012). Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology 62, 1882–1889. doi: 10.1016/j.neuropharm.2011

Nutritional interventions for brain health

Chang, P., Terbach, N., Plant, N., Chen, P. E., Walker, M. C., Williams, R. S. (2013). Seizure control by ketogenic diet-associated medium chain fatty acids. Neuropharmacology, 69, 105–114

Gano, L., Patel, M, & Rho, J. (2014). Ketogenic diets, mitochondria, and neurological diseasesJournal of Lipid Research, 55, 2211–2228. doi: 10.1194/jlr.R048975

Kashiwaya, Y., Takeshima, T., Mori, N., Nakashima, K., Clarke, K., & Veech, R. L. (2000). D-β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 97, 5440–5444.

Kim, D. Y., Simeone, K. A., Simeone, T. A., Pandya, J. D., Wilke, J. C., Ahn, Y., Geddes, J. W., Sullivan, P. G., Rho, J. M. (2015). Ketone bodies mediate antiseizure effects through mitochondrial permeability transition. Annals of Neurology 78, 77–87.

LaManna, J. C., Salem, N., Puchowicz, M., Erokwu, B., Koppaka, S., Flask, C., & Lee, Z. (2009). Ketones suppress brain glucose metabolism. Advances in Experimental Medicine and Biology, 645, 301–306. doi: 10.1007/978-0-387-85998-9_45

Law, T. H., Davies, E. S., Pan, Y., Zanghi, B., Want, E., Volk, H. A. (2016). A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy. British Journal of Nutrition, 114, 1438–1447. Erratum in: British Journal of Nutrition 115, 1696

Masino, S. A., Li, T., Theofilas, P., Sandau, U. S., Ruskin, D. N., Fredholm, B. B., Geiger, J. D., Aronica, E., Boison, D. (2011). A ketogenic diet suppresses seizures in mice through adenosine A₁ receptors. Journal of Clinical Investigation 121, 2679–2683.

Packer, R. M. A., Law, T. H., Davies, E., Zanghi, B., Pan, Y., & Volk, H. A. (2016). Effects of a ketogenic diet on ADHD-like behavior in dogs with idiopathic epilepsy. Epilepsy & Behavior, 55, 62–68. doi: 10.1016/j.yebeh.2015.11.014          

Pan, Y., Larson, B., Araujo, J. A., Lau, W., de Rivera, C., Santana, R., Gore, A., Milgram, N. W. (2010). Dietary supplementation with medium-chain TAG has long-lasting cognition-enhancing effects in aged dogs. British Journal of Nutrition, 103, 1746–1754. doi: 10.1017/S0007114510000097

Pan, Y., Kennedy, A. D., Jonsson, T. J., & Milgram N. W. (2018). Cognitive enhancement in old dogs from dietary supplementation with a nutrient blend containing arginine, antioxidants, B vitamins and fish oil. British Journal of Nutrition, 119, 349–358. doi: 10.1017/S0007114517003464

Pan, Y., Landsberg, G., Mougeot, I., Kelly, S., Xu, H., Bhatnagar, S., Migram, N. W. (2017). Efficacy of a therapeutic diet in dogs with signs of cognitive dysfunction syndrome (CDS): a prospective, double-blinded, placebo-controlled clinical study. Abstract N10: 2017 American College of Veterinary Internal Medicine (ACVIM) forum. Available at https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvim.14778

Pan, Y., Araujo, J. A., Burrows, J., de Rivera, C., Gore, A., Bhatnagar, S.& Milgram, N. W. (2013). Cognitive enhancement in middle-aged and old cats with dietary supplementation with a nutrient blend containing fish oil, B vitamins, antioxidants and arginine. British Journal of Nutrition, 110, 40–49. doi: 10.1017/S0007114512004771

Wlaź, P., Socała, K., Nieoczym, D., Łuszczki, J. J., Zarnowska, I., Zarnowski, T., Czuczwar, S. J., Gasior, M. (2012). Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology 62, 1882–1889.